
## **Sensory Enrichment Therapy as an Effective Treatment for Autism**

Michael Leon, Ph.D. Center for Autism Research and Treatment Department of Neurobiology and Behavior University of California Irvine

## **Further decreasing** environmental stimulation

- · Increases cell death
- · Decreases production of new neurons
- · Interferes with neuronal pathfinding
- · Induces functional impairments

## Increasing environmental stimulation



## **Increased stimulation** enhances brain function

- · Increases growth factors
- · Increases connections between neurons
- · Increases production of new neurons
- · Improves learning

# **Enriched environments improve** outcomes after neural challenges

- Stroke
  - · Huntington's disease · Parkinson's disease
- Seizures
- Brain lesions
- · Alzheimer's disease
- Percussive head injury
- Down syndrome ALS
- Neural transplants
  - Neuronal death in aging Cerebellar degeneration
- ADHD
- Repetitive behavior\*
- Prenatal alcohol
- Fragile X syndrome\* Rhett syndrome\*
- Lead exposure Valproic acid\*
- · Potocki-Lupski syndrome\*

Can this approach be used in humans?

### Further decreasing brain activation

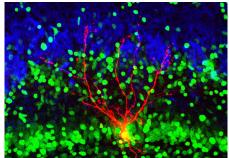


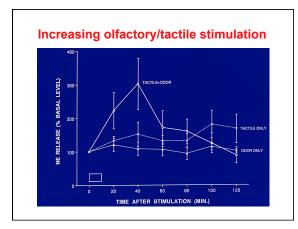
# One third of orphanage children have post-institutional autistic syndrome

- · Inference of other's intentions
- Attention
- · Social interactions
- Language production
- · Response to language
- Memory formation
- Motivation
- · Reversed with high-quality foster care

### Brain areas affected in autism

- medial prefrontal cortex infers other's intentions
- · cerebellum attention
- insular cortex language response
- · orbitofrontal cortex social judgment
- supramarginal gyrus language production
- hippocampus memories
- · nucleus accumbens motivation
- · fusiform gyrus facial recognition


# Human brain areas affected by olfactory loss


- · medial prefrontal cortex
- · cerebellum
- · insular cortex
- · orbitofrontal cortex
- · supramarginal gyrus
- · hippocampus
- · nucleus accumbens
- · fusiform gyrus

# Olfactory and tactile sensitivity in autism

- More than 90% of children with autism have sensory differences from typical children.
- Olfactory and tactile dysfunction are the strongest predictors of atypical social behaviors and poor social communication.

# Olfactory/tactile pairings induce learning young rats





# Increased olfactory and/or tactile stimulation

- Infants learn to prefer the mother's odor or other odors that are paired with tactile stimulation.
- · The learned odor calms distressed infants.
- Olfactory stimulation prevents apnea and bradycardia in infants.
- Tactile stimulation increases weight gain of premature infants.
- Odor + tactile stimulation has an even greater impact on the growth of premature infants.

# Mothers give their children a daily massage with a scented oil



Can olfactory/tactile stimulation ameliorate the symptoms of autism?

# **Environmental enrichment for a 3-year-old female with autism**

- Poor language skills
- Poor cognitive skills
- Poor motor skills
- Poor social skills
- · Repetitive behavior

# **Sensory Enrichment Therapy**

- Olfactory stimulation four times/day, paired with gentle tactile stimulation.
- · Olfactory stimulation through the night.
- Sensory stimulation games, morning and evening, each time for 15-30 min.
- Emphasis on novelty.

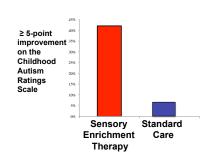


### **Clinical trial**

- 'Gold standard' test confirmed the diagnosis of 'full' autism (ADOS)
- Random assignment to Sensory Enrichment Therapy or Standard Care
- IQ test (Leiter), autism severity test (CARS)
- Tested blind at the start of the study and after 6 months

## **Subject characteristics**

No difference in:


- gender (all boys)
- age (3-12 years old)
- · initial cognitive scores
- · initial severity of autism symptoms

# No significant difference in concurrent therapies

| Standard | Sensory                          |
|----------|----------------------------------|
| Care     | Enrichment                       |
| 80%      | 77%                              |
| 60%      | 54%                              |
| 67%      | 77%                              |
| 13%      | 8%                               |
|          |                                  |
| 53%      | 31%                              |
|          | Care<br>80%<br>60%<br>67%<br>13% |

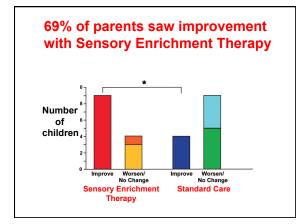


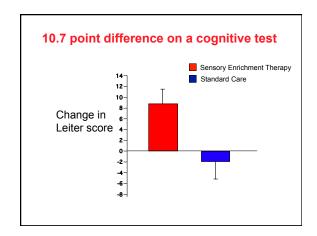
# 42% of children with autism had a clinically significant improvement



### Paired sensorimotor exercises

- The child places his/her hands or feet in water of different temperatures (thermal, motor).
- The child squeezes objects of different shapes and textures (tactile, motor)
- The parent draws lines on the child's hand with objects of different texture while the child watches (tactile, visual)
- The blindfolded child walks on a pathway of different textures (tactile, motor)
- The parent draws imaginary lines on the child's face, arms, and legs with objects having different textures while music plays (tactile, auditory)
- The child selects the twin of objects in a pillowcase after seeing it on the table (tactile, cognitive)
- The child is given a scented bath and a massage with scented oil (thermal, tactile, olfactory)
- The parent touches the child on his/her arms and legs with a cooled spoon or warmed spoon while the parent speaks or sings (thermal, auditory, tactile)





### Paired sensorimotor exercises

- The child selects a texture square that matches the texture of an object in a photo (tactile, cognitive, visual)
- Different objects are used to draw imaginary circles on the child's face (tactile, cognitive)
- The child places cold straws filled with ice in Play-Doh using each hand (motor, thermal, visual)
- The child walks on a 2" x 8" x 5' board while holding a cooled tray (thermal, balance, motor)
- The parent rubs each of the child's fingers and toes in turn, while the child watches (tactile, visual)
- The child places coins in a piggy bank using only his/her reflection in a mirror (motor, cognitive, visual  $^{\!o}$
- The child uses a magnet on the end of a small fishing line to pick up paper clips (motor, visual)
- The child tracks a red object that is moved around a photo of a painting (visual, cognitive)

### Paired sensorimotor exercises

- The child draws shapes using pen and paper while the parent draws imaginary shapes on the child's back using a toy (motor, tactile, visual)
- The child walks up and down stairs while holding a big ball or pillow (motor, tactile, balance)
- The child draws lines using both hands simultaneously (motor, visual),
- The child matches the color of objects in a photo with color beads (visual, cognitive, motor)
- The child is shown a picture of an object and picks out the real object on a table among other objects (visual, cognitive, motor)
- The child blows a small piece of aluminum foil on the floor as far as possible (motor, visual)
- The child views a picture moving with another picture (visual, cognitive)
- The child views a photo and music regarding a scene (auditory, visual)
- · Classical music at bedtime
- Lines are drawn on the child's arms and legs with cooled or warmed spoons (thermal, tactile)





### **Communication improvements**

- "She continues to amaze us with her language."
- "She is talking a lot and is referring to her friends/ teachers at school."
- "I am seeing improvement in his conversational skills."
- "She continues to show an increase in her vocabulary."
- "The teacher informed me how his language has been improving."
- "She is talking a lot and using new words all the time."
- "He is progressing really well with his language development."
- "His vocabulary has increased and his articulation has improved."

## **Prolonged therapy**

- Seizures at 2.5 years-old, minimally verbal, non-interactive
- Standard treatment until 8 years-old with only minor improvement
- Sensory Enrichment Therapy with no other treatments for 18 months

## **Enriched environments improve** outcomes after neural challenges

- Stroke
- · Huntington's disease
- Seizures
- · Parkinson's disease
- · Brain lesions
- · Alzheimer's disease
- Percussive head injury
- Down syndrome
- Neural transplants
- ALS
- Neuronal death in aging Cerebellar degeneration
  - Repetitive behavior\*

- Prenatal alcohol
- Fragile X syndrome\* Rhett syndrome\*
- Lead exposure
- Valproic acid\*

# Potocki-Lupski syndrome\*

## Advantages of this treatment

- · Effectiveness
- Expertise
- Expense
- · Extends the age for effective treatment

# It's not sensory integration therapy

- Sensory integration therapy is widely used for the treatment of autism, but there is little highquality data that support its use (Baranak, 2002; Dawson and Watling 2000).
- "...parents should be informed that the amount of research regarding the effectiveness of sensory integration therapy is limited and inconclusive."

American Academy of Pediatrics, 2012

# It's not sensory integration therapy

• A small, but significant decrease in "autistic mannerisms" [SRS subscale] in a sensory integration group compared to controls (Pfeiffer, et al., 2011).

# **Sensory Integration** vs. **Sensory Enrichment**

# · No exercise balls, swings, beanbags,

- trampolines, vibrating, brushing, weighted vests or blankets, deep pressure, pillows, chewing, vestibular stimulation, heavy work, rocking, tunnels, unpaired sensory stimulation
- Very few proprioceptive exercises in Sensory **Enrichment Therapy**
- Several times/day (Sensory Enrichment) vs.
- 1-3 times/week (Sensory Integration)

## Additional questions

- · Can it last?
- · Can we predict who will improve?
- Can continued therapy improve outcomes?
- Can it work alone?
- · Can it be replicated in other clinics?
- Can it work for older or younger children?
- · Can it work for medicated children?
- Can we optimize outcomes?
- Can we characterize the changes in the brain?

# **Treatment guidance**

- Woo, C.C. and Leon, M. 2013. Environmental enrichment as an effective treatment for autism: A randomized controlled trial. *Behavioral Neuroscience*, 127:487-497.
- Mendability.com

# **Acknowledgements**







Helena Johnson, PhD Christy Hom, PhD



Kathleen Montemagni, PhD



Nancy Lurie Marks Foundation, Samueli Foundation CART - Thompson Foundation, NIH, Eyal & Yael Aronoff